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For a convex equation of state, a general theorem on shock waves is proved: a
sequence of two shocks has a lower entropy than a single shock to the same final
pressure. We call this the triple-shock entropy theorem. This theorem has important
consequences for shock interactions. In one dimension the interaction of two shock
waves of the opposite family always results in two outgoing shock waves. In two
dimensions the intersection of three shocks, such as a Mach configuration, must have
a contact. Moreover, the state behind the Mach stem has a higher entropy than
the state behind the reflected shock. For the transition between a regular and Mach
reflection, this suggests that the von Neumann (mechanical equilibrium) criterion
would be prefered based on thermodynamic stability, i.e. maximum entropy subject
to the system constraint that the total specific enthalpy is fixed. However, to explain
the observed hysteresis of the transition we propose an analogy with phase transitions
in which locally stable wave patterns (regular or Mach reflection) play the role of
meta-stable thermodynamic states. The hysteresis effect would occur only when the
transition threshold exceeds the background fluctuations. The transition threshold is
affected by flow gradients in the neighbourhood of the shock intersection point and
the background fluctuations are due to acoustic noise. Consequently, the occurrence of
hysteresis is sensitive to the experimental design, and only under special circumstances
is hysteresis observed.

1. Introduction
It is well known that the entropy change across a weak shock is third order in

shock strength, as measured, for example, by the pressure difference across the shock.
As a consequence, a sequence of two weak shocks has a lower entropy than a single
shock to the same final pressure. Moreover, if a fixed pressure jump is obtained with
multiple shocks then the entropy change vanishes in the limit of a large number of
weak shocks. For an ideal gas equation of state, there are simple analytic expressions
for the Hugoniot locus. These expression can be used to show that a sequence of
arbitrary strength shocks has a lower entropy than a single shock to the same final
pressure. This property of shock wave entropy is generally assumed for an arbitrary
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equation of state. Here we prove that the shock entropy does indeed obey this property
for a large class of materials.

We consider materials with a convex equation of state and satisfying either the weak
condition, the modified medium condition or the two-dimensional stability condition.
These constraints are reviewed in the next section. For now we simply note that
constraints are needed to ensure all shock waves satisfy important properties that
typically are assumed. Convexity of the equation of state and the weak condition imply
that an entropy-increasing shock is compressive and stable in one-dimension. With
the addition of the modified medium condition, one-dimensional shock interactions
have a unique outcome. A further condition is required for shock waves to be stable
in two-dimensions. Except in the vicinity of a phase transition, real materials satisfy
these conditions: more precisely, nearly all materials in a single phase satisfy the
convexity condition (Bethe 1942), while all materials known to us satisfy the modified
medium condition. Moreover, planar shock fronts are stable and the equilibrium
equation of state of real materials satisfies the two-dimensional stability condition.
Exceptions to shock stability only occur when certain non-equilibrium processes, such
as dissociation or ionization, dominate the shock profile.

For the class of materials with a convex equation of state and satisfying the weak
condition we prove in § 2 that the entropy behind a sequence of N shocks is lower
than the entropy behind a single shock to the same final pressure. The key result
is for two shocks. We call this the triple-shock entropy theorem. With the additional
assumption of the modified medium condition, we derive a bound on the particle
velocity along the Hugoniot locus for a sequence of two shocks compared to a single
shock to the same final pressure. The triple-shock entropy theorem and the related
velocity bound have important consequences for shock interactions in both one and
two dimensions.

Our analysis of shock interactions in § 3 assumes that the modified medium con-
dition is satisfied. Using the bound on the particle velocity along the Hugoniot we
show that the collision in one dimension of two shocks of the opposite wave family
always results in two outgoing shock waves. By contrast, it is well known that the
collision of two shocks of the same family can result in either a shock or rarefaction
of the opposite family in addition to a stronger shock of the original family, see e.g.
Courant & Friedrichs (1948, chap. III.D, § 79).

It is common in two dimensions for oblique shocks to intersect and form distinctive
wave patterns. The two-dimensional wave patterns are the natural analogue of shock
interactions in one dimension. We discuss in detail one important wave pattern,
known as a Mach configuration, which occurs when three shock waves intersect.
Since streamlines either go through the incident and reflected shock or through the
Mach stem, this wave pattern provides an example in which a sequence of two
shocks naturally arises with the same final pressure as a single shock. The triple-
shock entropy theorem implies that the entropy is higher behind the Mach stem than
behind the reflected shock. As a consequence, a contact must occur whenever three
shocks intersect. Moreover, we show that the difference in entropy along steady-state
streamlines implies that shock interactions must generate vorticity.

In contrast to one dimension, questions of non-uniqueness arise for two-dimensional
shock interactions. In particular, a Mach configuration represents a splitting of
an incoming shock into two outgoing shocks (Landau & Lifshitz 1959, chap. X,
§ 102). Stability of shock waves in two-dimensions requires an additional constraint
on the equation of state. The two-dimensional stability condition derived from a
linear stability analysis (Kontorovich 1959; Fowles 1981) also implies the weak and
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medium conditions. Hence, two-dimensional stability implies that one-dimensional
shock interactions are well behaved (Menikoff & Plohr 1989). We show in § 4.1
that the two-dimensional stability condition can be given a physical interpretation
related to a threshold for a Mach configuration to occur. Furthermore, we argue
for the regular reflection to Mach reflection transition that stability favours the
von Neumann (mechanical equilibrium) transition criterion. This is based on the
observation that at fixed pressure the entropy of a regular reflection can be increased
by creating a velocity shear layer which allows kinetic energy to be exchanged for
enthalpy, i.e. transition to Mach reflection.

Finally, in § 4.2 we discuss the hysteresis associated with the transition between
regular and Mach reflection. A hysteresis effect was first observed by Henderson
& Lozzi (1979) on curved surfaces and predicted by Hornung, Oertel & Sandeman
(1979) for plane surfaces but not observed in the initial experiments of Hornung &
Robinson (1982). Recent experiments and numerical simulations by Chpoun et al.
(1995), Ivanov, Gimelshein & Beylich (1995a, b) Ivanov et al. (1995b), Fomin et al.
(1996), Skews (1996) show that in some circumstances the transition does exhibit a
hysteresis effect. The hysteresis effect implies that both regular and Mach reflection
are locally stable and hence a simple transition criterion is inadequate.

To explain the experimental result that hysteresis is only observed under limited cir-
cumstances, we utilize an analogy with phase transitions. This leads to the hypothesis
that the bifurcation or transition between locally stable wave patterns can be triggered
only by a perturbation above a threshold amplitude. Since both the noise level and
the threshold amplitude depend on the experimental design, it is not surprising that
hysteresis behaviour is observed in some experiments but not in others. In particular,
transverse gradients from three-dimensional disturbances can have a significant effect
on the transition (Ivanov et al. 1995; Fomin et al. 1996; Skews 1996).

2. Properties of the shock Hugoniot
In this section, properties of the Hugoniot locus are derived for a large class of

materials. We assume a material is in local thermodynamic equilibrium and can be
characterized by an equilibrium equation of state (EOS). We require the EOS to satisfy
the following physical properties.

(1) Thermodynamic phase space is parameterized by (V , S) where V = 1/ρ is the
specific volume, ρ is the density and S is the entropy. A complete EOS is specified by
the specific internal energy e(V , S).

(2) Thermodynamic consistency requires that the fundamental thermodynamic
identity is satisfied:

de = −PdV + TdS, (2.1)

where P is the pressure and T is the temperature.
(3) The temperature is always positive. Since a temperature of absolute zero can

not be physically obtained, we may assume that T > 0.
(4) Every isentrope satisfies the asymptotic conditions that (i) P → ∞ as V → 0,

and (ii) P → 0 as V →∞.
(5) For any V , the pressure becomes arbitrarily large as S increases, i.e. P (V , S)→
∞ as S →∞ for fixed V .

In addition, we assume that the equation of state is convex, i.e. in the (V , P )-plane
every isentrope is convex. Except in the vicinity of phase transitions, isentropes of
real materials are convex.
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From the conservation laws for mass, momentum and energy, a shock wave satisfies
the Hugoniot equation

e1 − e0 = 1
2
(P0 + P1) (V0 − V1), (2.2)

where the subscripts 0 and 1 denote the states ahead of and behind the shock,
respectively. The shock speed, σ, is determined by the relation

[ρ0(σ − u0)]
2 = [ρ1(σ − u1)]

2 = (P1 − P0)/(V0 − V1), (2.3)

and the change in the particle velocity, u, is given by

(u1 − u0)
2 = (P1 − P0) (V0 − V1). (2.4)

For the wave speed and particle velocity, the sign of the square root determines the
wave family i.e., right facing (characteristic u+c) or left facing (characteristic u−c). We
assume the initial state (V0, e0, u0) is specified, and refer to the Hugoniot locus based
on the state 0 as the set of all states that can be reached from state 0 by a shock wave.
The shock state and wave speed for a given wave family are completely determined
by (2.2), (2.3) and (2.4), and the EOS, i.e. P0 = P (V0, e0) and P1 = P (V1, e1). Though
the Hugoniot locus depends explicitly only on an incomplete EOS, P = P (V , e), its
properties depend on the existence of a complete EOS.

We will use three dimensionless parameters to characterize an equation of state.

The adiabatic exponent

γ ≡ −V
P

∂P

∂V

∣∣∣∣
S

=
c2

PV
(2.5)

is a dimensionless form for the sound speed c. Thermodynamic stability requires
γ > 0.

The Grüneisen coefficient

Γ ≡ V ∂P

∂e

∣∣∣∣
V

=
V

T

∂P

∂S

∣∣∣∣
V

(2.6)

measures the spacing of the isentropes in the (V , P )-plane.
Using these parameters, the fundamental thermodynamic relation can be expressed

as

VdP = −γPdV + ΓTdS. (2.7)

The fundamental derivative

G ≡ −1

2
V
∂2P/∂V 2|S
∂P/∂V |S

(2.8)

is a measure of the convexity of an isentrope in the (V , P )-plane. For a convex EOS
G > 0 everywhere. Moreover, G > 0 excludes γ = 0 and hence implies that γ > 0
everywhere.

In order for fluid flow (solution to the compressible Euler equations) to be well
behaved, one-dimensional Riemann problems must have a unique solution. This
requires that both the pressure and particle velocity are monotonic along the Hugoniot
locus. Three constraints on an EOS have been proposed to ensure monotonicity of
the state variables along the Hugoniot locus; they are called the strong, medium and
weak condition, see Menikoff & Plohr (1989 and references contained therein). In
addition, there is a slightly stronger variation or modified medium condition which is
equivalent to the ‘shock splitting’ condition (III) of Bethe (1942). The weak condition,
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Γ 6 2γ, is sufficient for the pressure to be monotonic and the modified medium
condition, Γ 6 γ, is sufficient for both pressure and particle velocity to be monotonic.
A stronger stability condition, Γ 6 γ − 1, is needed in order for strong shock waves
to be stable to small perturbations in multi-dimensions.

The triple-shock entropy theorem requires G > 0 and the weak condition. The
analysis of the particle velocity along the Hugoniot locus requires in addition the
modified medium condition. Both the weak and modified medium condition follow
from the two-dimensional stability condition. Thus, our assumptions are physically
reasonable and are only mild constraints on an equation of state. We do not assume
Γ > 0 everywhere. Consequently, the (V , P )-plane does not uniquely parameterize
phase space. Since γ > 0, a given isentrope can be parameterized by either V or P .
Consequently, thermodynamic phase space can be uniquely parameterized by either
the (V , S)-plane or the (P , S)-plane.

2.1. Preliminary results

The Hugoniot locus based on the state 0 corresponds to the zero-level set of the
Hugoniot function. In the (V , S)-plane, the Hugoniot function is given by

h(V , S) = e(V , S)− e0 − 1
2

[P (V , S) + P0] (V0 − V ) . (2.9)

The equivalent function in the (P , S)-plane is

h̃(P , S) = h(V (P , S), S)

= H(P , S)−H0 − 1
2

[V (P , S) + V0](P − P0) , (2.10)

where H = e+ PV is the specific enthalpy.
Our analysis utilizes the differential of the Hugoniot function. Taking the differential

of (2.9) and (2.10) and substituting the thermodynamic relations (2.1) and (2.7) we
obtain

dh =

(
1 +

1

2
Γ

∆V

V

)
TdS − 1

2

(
γ

∆V

V
+

∆P

P

)
PdV , (2.11)

dh̃ =

(
1− Γ

2γ

∆P

P

)
TdS +

1

2γ

(
γ

∆V

V
+

∆P

P

)
VdP , (2.12)

where ∆f = f − f0 is the difference of the variable f with respect to its value at the
initial state. From (2.12) we obtain

∂h̃

∂S

∣∣∣∣
P

=

(
1− Γ

2γ

∆P

P

)
T . (2.13)

We note that 0 6 ∆P/P < 1 if P > P0 and Γ/2γ 6 1 if the weak condition holds.
The importance of the weak condition stems from the fact that

∂h̃

∂S

∣∣∣∣
P

> 0, if P > P0 and Γ 6 2γ. (2.14)

The Hugoniot function reduces the problem of determining the Hugoniot locus
to finding the solution of a single equation in two variables: either V and S , or P
and S . In order for σ and u1 to be real, and hence to have a solution to the three
Rankine–Hugoniot jump conditions, it is necessary that ∆P∆V 6 0.

Lemma 1. The Hugoniot function associated with the state 0 has no zeros when
∆P · ∆V > 0 except for the point (V , P ) = (V0, P0).
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Proof. Let (V , P ) be any point in the quadrant ∆P > 0, ∆V > 0 with (V , P ) 6=
(V0, P0). If S < S0 then the Hugoniot function can be expressed as

h(V , S) = h(V0, S0) +

∫ S

S0

∂Sh dS
∣∣∣
V0

+

∫ V

V0

∂Vh dV
∣∣∣
S
.

We note that (i) h(V0, S0) = 0, (ii) ∂Sh|V0
= T > 0, and (iii) ∂Vh|S = − 1

2
(γ∆V/V +

∆P/P )P < 0. Consequently, h(V , S) < 0.
Similarly, if S > S0 then

h̃(P , S) = h̃(P0, S0) +

∫ S

S0

∂S h̃ dS
∣∣∣
P0

+

∫ P

P0

∂P h̃ dP
∣∣∣
S
.

We note that (i) h̃(P0, S0) = 0, (ii) ∂S h̃|P0
= T > 0, and (iii) ∂P h̃|S = (2γ)−1 (γ∆V/V +

∆P/P )V > 0. Consequently, h̃(P , S) > 0. Hence, the Hugoniot function is not zero in
the quadrant ∆P > 0, ∆V > 0 provided that the point (V0, P0) is excluded.

The Hugoniot equation is invariant when the initial and final states are inter-
changed. Interchanging the initial and final shock states interchanges the two quad-
rants ∆P > 0, ∆V > 0 and ∆P 6 0, ∆V 6 0. Hence the Hugoniot function is not
zero when ∆P∆V > 0 except for the point (V0, P0).

This Lemma implies that there are no extraneous solutions to the Hugoniot
equation, i.e. there is a one-to-one correspondence between solutions to the Hugoniot
equation and points on Hugoniot locus for each wave family.

The Bethe–Weyl theorem is important for a convex EOS. It implies that the
Hugoniot locus can be parameterized by the entropy and consists of a single curve
connected to the initial state. We correct an error in the proof given in Menikoff &
Plohr (1989).† It is useful to consider points on the Hugoniot locus based on the
state 0 with a given entropy S . These points correspond to the zero-level set of the
restricted Hugoniot function

hS (V ) = e(V , S)− e0 − 1
2

[P (V , S) + P0] (V0 − V ), (2.15)

or equivalently

h̃S (P ) = H(P , S)−H0 − 1
2

[V (P , S) + V0] (P − P0).

Taking the first two derivatives of (2.15) we obtain

h′S (V ) = − 1
2

(
P (V , S)− P0 −

∂P

∂V

∣∣∣∣
S

(V − V0)
)
, (2.16)

h′′S (V ) = 1
2
(V − V0)

∂2P

∂V 2

∣∣∣∣
S

. (2.17)

The initial isentrope is an important reference curve. We note that

hS0
(V0) = h′S0

(V0) = h′′S0
(V0) = 0 .

† In (4.13) of Menikoff & Plohr (1989), P0 which is equal to P (V0, S0) was inadvertently substituted
for P (V0, S). As a consequence, an additional condition is needed to rule out a disconnected branch
of the Hugoniot locus with entropy-increasing expansive shocks or entropy-decreasing compressive
shocks. Either Bethe’s condition Γ > −2 or the weak condition Γ 6 2γ are sufficient to recover
theorem 4.1 of Menikoff & Plohr (1989).
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Figure 1. The essential geometry of the restricted Hugoniot function. The dotted, solid and
dashed lines correspond to S < S0, S = S0 and S > S0, respectively.

Moreover, for a convex EOS (∂2P/∂V 2)|S > 0, and by (2.17)

h′′S0
(V )

{
< 0 for V < V0

> 0 for V > V0.

Therefore, hS0
(V ) has an inflection point at V = V0 and is monotonically increasing

over the entire range 0 < V < ∞. In particular,

hS0
(V ) < 0 for V < V0. (2.18)

Since h̃S0
(P ) = hS0

(V (P , S0)) and (∂P/∂V )|S < 0, it follows that

h̃S0
(P ) < 0 for P > P0. (2.19)

As an illustrative example, for an ideal gas EOS the restricted Hugoniot function
along the initial isentrope is shown in figure 1 by the solid line.

We now exclude anomalous shocks.

Lemma 2. If G > 0 and Γ 6 2γ then there are no entropy-increasing expansive
shocks and no entropy-decreasing compressive shocks.

Proof. The Hugoniot function can be expressed as

h̃(P , S) = h̃S0
(P ) +

∫ S

S0

∂h̃

∂S

∣∣∣∣
P

dS.

From (2.19), the first term on the right-hand side is negative for P > P0. From
(2.14) the integrand is positive. Hence the integral is negative for S < S0. Therefore,
h̃(P , S) < 0 for entropy-decreasing compressive shocks. Since interchanging the initial
and final states converts an entropy-decreasing compressive shock into an entropy-
increasing expansive shock, both of these anomalous shocks are excluded.

We note that for a non-convex EOS entropy-increasing expansive shocks are
required for the existence of solutions to Riemann problems since a rarefaction curve
ends when G = 0, see e.g. Zel’dovich & Raizer (1967, chap. XI, § 20). Thus, anomalous
shocks are allowed by thermodynamics but are excluded by our assumption that the
equation of state is convex.
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Next we show that the weak condition implies that compressive shocks can be
parameterized by P and that the Hugoniot locus extends up to P = ∞.

Lemma 3. If G > 0 and Γ 6 2γ then the Hugoniot locus based on state 0 con-
tains a unique shock for any P > P0. Moreover, pressure-increasing shocks are entropy
increasing.

Proof. By (2.14), for any fixed P > P0, h̃(P , S) is a monotonic function of S , and
therefore has at most one zero. Moreover, by (2.19), h̃(P , S0) < 0 for P > P0. If we can
find an S ′ such that h̃(P , S ′) > 0 then by continuity h̃(P , S) would have a unique zero
for any P > P0. From EOS property (5) and continuity, there exists an S ′ > S0 such
that P = P (V0, S

′). Since h(V0, S0) = 0 and from (2.11), (∂h/∂S)|V (V0, S) = T > 0,

it follows that h̃(P , S ′) = h(V0, S
′) > 0. Hence, we can conclude that h̃(P , S) has a

unique zero for any P > P0. Therefore, there is a unique shock for any P > P0, and
it is entropy increasing.

For a convex EOS satisfying the weak condition we can obtain the first key result.

Theorem 1 (Bethe–Weyl). If G > 0 and Γ 6 2γ then the Hugoniot locus based
on any state 0 intersects every isentrope exactly once. Moreover, for entropy-increasing
shocks V < V0 and |u − σ| < c, while for entropy-decreasing shocks V > V0 and
|u− σ| > c.

Proof. From the asymptotic EOS conditions, it follows that hS (V )→ −∞ as V → 0
and hS (V ) → ∞ as V → ∞; see Menikoff & Plohr (1989). By continuity, there is at
least one shock state for every S . By Lemmas 1 and 2 shocks are either compressive
and entropy increasing or expansive and entropy decreasing. First, we consider the
entropy-increasing case: S > S0 and V < V0. From (2.15) and (2.1)

hS (V0) = e(V0, S)− e0 =

∫ S

S0

TdS

∣∣∣∣
V0

> 0.

Moreover, hS (V )→ −∞ as V → 0 and from (2.17) h′′S (V ) < 0. Hence, hS (V ) is concave
in the domain 0 < V < V0. Therefore, hS (V ) has a unique zero. Furthermore, at the
zero crossing h′S > 0. The dashed line in figure 1 illustrates the restricted Hugoniot
function for this case.

At the zero crossing, using (2.3) and (2.5), we can rewrite (2.16) as

0 < 2
h′s(V )

V0 − V
=

∆P

∆V
− ∂P

∂V

∣∣∣∣
S

= ρ2
[
−(σ − u)2 + c2

]
.

Therefore, |σ − u| < c. A similar argument can be applied to obtain the analogous
result in the entropy decreasing case.

A continuity argument allows us to characterize the Hugoniot locus as follows.

Corollary 1. If G > 0 and Γ 6 2γ then the Hugoniot locus can be parameterized
by S and consists of a single curve connected to the base state.

Proof. From the Bethe–Weyl theorem, the base state 0 is the only sonic state on
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the Hugoniot locus. By (2.12), along the Hugoniot locus

∂h̃

∂P

∣∣∣∣
S

=
1

2γ

(
γ

∆V

V
+

∆P

P

)
V 6= 0

for S 6= S0. Since the Hugoniot locus corresponds to h̃(P , S) = 0, the implicit value
theorem (see Appendix A) implies that the Hugoniot locus can locally be parame-
terized by S except at S0. From the Bethe–Weyl theorem, there is a unique shock
for each S . Therefore, the local patches can be pieced together to give a connected
entropy-increasing branch and a connected entropy-decreasing branch. In the vicinity
of S0, an additional argument is needed because of the well known fact that for weak
shocks the entropy change is third order. We note that (∂h̃/∂S)|P (P0, S0) = T0 > 0.
The implicit value theorem implies that weak shocks can locally be parameterized by
P . Because there is unique shock for each S , the Hugoniot locus can be parameter-
ized by S in a local neighbourhood of S0. This connects the entropy-increasing and
entropy-decreasing branch. Therefore, the Hugoniot locus consists of a single branch.
It can be parameterized by S and is connected to the initial state.

The following is an important consequence of the Bethe–Weyl theorem that we will
need for the triple-shock entropy theorem.

Corollary 2. If G > 0 and Γ 6 2γ then for an entropy-increasing shock the ahead
state is supersonic and the behind state is subsonic.

Proof. From the Bethe–Weyl theorem an entropy-increasing shock is compressive.
The behind state is subsonic since c > |σ − u|. Interchanging the initial and final
state results in an entropy-decreasing expansive shock. The equations for the wave
speed and particle velocity, (2.3) and (2.4), are symmetric in the shock states. Hence,
it follows from the Bethe–Weyl theorem that c0 < |σ − u0| and the ahead state is
supersonic.

2.2. Main theorem

We can now prove our main result.

Theorem 2 (Triple-shock entropy theorem). Suppose G > 0 and Γ 6 2γ are sat-
isfied everywhere. Consider only the physical entropy-increasing shocks. Then a sequence
of two shocks has a smaller entropy than a single shock to the same final pressure.

Proof. Suppose the material is initially in state 0. Let state 1 be a point on the
shock Hugoniot based on state 0, and let state 2 be a point on the shock Hugoniot
based on state 1. By Lemma 3 there is a unique state 2′ on the Hugoniot locus
based on state 0 such that P2′ = P2. With this notation, the theorem can be stated as
S2 < S2′ .

We specify a shock by its end states, e.g. shock 0-1 denotes the shock connecting
state 0 to state 1. From the Hugoniot equations for shocks 1-2 and 0-1

e2 − e1 = 1
2

(P1 + P2) (V1 − V2) ,

e1 − e0 = 1
2

(P0 + P1) (V0 − V1) .

Adding these equation we obtain

e2 − e0 = 1
2

(P1 + P2) (V1 − V2) + 1
2

(P0 + P1) (V0 − V1). (2.20)
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V0

P2

P1

P0

V1V2

P

V

2 2´

1

0

Figure 2. Geometry of Hugoniot loci in the (V , P )-plane used in proof of triple-shock theorem.
The solid line and dashed lines are Hugoniot loci based on states 0 and 1 respectively. The dotted
lines correspond to the Rayleigh lines connecting the end states of shocks 0-1, 1-2 and 0-2′. The
shaded area is the triangle formed by the states 0, 1, and 2.

The restricted Hugoniot function based on state 0 with entropy S2 is

hS2
(V ) = e(V , S2)− e0 − 1

2
[P0 + P (V , S2)] (V0 − V ).

Evaluating at V = V2 and substituting (2.20) to eliminate e2 − e0 yields

hS2
(V2) = 1

2
(P1 + P2) (V1 − V2) + 1

2
(P0 + P1) (V0 − V1)− 1

2
(P0 + P2) (V0 − V2).

Each term on the right-hand side corresponds to the area of a trapezoid in the (V , P )-
plane. By the Bethe–Weyl theorem, the entropy-increasing shocks are compressive.
Hence, V2 < V1 < V0. It then follows from the geometry (shown in figure 2) that

hS2
(V2) =

[
signed area of triangle connecting
points (V0, P0), (V1, P1) and (V2, P2)

]
, (2.21)

where the area is positive if the point (V2, P2) lies below the line connecting (V0, P0),
(V1, P1).

By Corollary 2 the state behind shock 0-1 is subsonic and the state ahead of
shock 1-2 is supersonic. From (2.3) and c2 = −V 2(∂P/∂V )|S , we obtain

[ρ1(σ01 − u1)]
2 < (ρ1c1)

2 < [ρ1(σ12 − u1)]
2

P1 − P0

V0 − V1

< −V 2
1

∂P

∂V

∣∣∣∣
S

(V1, S1) <
P2 − P1

V1 − V2

.

Therefore, in the (V , P )-plane state 2 lies above the line connecting states 0 and
state 1. It then follows from (2.21) that hS2

(V2) < 0. Hence, h̃(P2, S2) < 0. By (2.14),

∂h̃/∂S |P > 0. Therefore, the zero of h̃(P2, S) occurs for S2′ > S2.

Corollary 3. A sequence of N shocks has less entropy than a single strong shock
to the same pressure.

Proof. The triple-shock entropy theorem is a special case of the Corollary for
N = 2. The proof for N shocks is by induction. Suppose the corollary is true for
N − 1 shocks, then we need to extend it to N shocks. Let the initial state be denoted
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0 and the state behind the shocks be denoted 1, 2, · · · , N. Let α denote the state
behind a single shock from state 0 to a pressure PN , and let β denote the state behind
a single shock from state 1 to a pressure PN . By the triple-shock entropy theorem
Sβ < Sα. Applying the corollary to the N − 1 shocks from state 1 to state N, we have
SN < Sβ . Therefore, SN < Sα. By induction the corollary is true for any N.

A thermodynamic state is uniquely determined by S and P . From thermodynamic
identities, the following differential relations can be derived for other thermodynamic
variables of interest, see for example, Appendix A in Menikoff & Plohr (1989):

dH = VdP + TdS, (2.22)

PV

T
dT =

Γ

γ
VdP +

γg − Γ 2

γ
TdS, (2.23)

γde = VdP + (γ − Γ )TdS, (2.24)

γPdV = −VdP + ΓTdS, (2.25)

where g = PV/CVT > 0 is a dimensionless inverse specific heat. We also note that
thermodynamic stability requires the entropy to be jointly concave in the variables V
and e. This implies that γg > Γ 2. These relations enable us to extend the triple-shock
entropy theorem to the other thermodynamic variables.

Corollary 4. Consider the state behind a sequence of shocks to the same final pres-
sure as a single shock. The multiple shocks have a lower enthalpy and lower temperature
than a single shock. Moreover, if Γ 6 γ then multiple shocks have a lower specific en-
ergy, and if Γ > 0 then multiple shocks have a lower specific volume.

Proof. By Corollary 3 multiple shocks to the same P as a single shock have a lower
entropy. From (2.22) and (2.23), (∂H/∂S)|P > 0 and (∂T/∂S)|P > 0. Hence multiple
shocks have a lower enthalpy and temperature. With the additional condition Γ < γ,
then by (2.24) (∂e/∂S)|P > 0 and the specific energy is lower for multiple shocks.
Finally, if Γ > 0 then by (2.25) (∂V/∂S)|P > 0 and multiple shocks have a lower
specific volume or higher density.

With the additional assumption of the modified medium condition, we can obtain
a similar result for the particle velocity (denoted by u) as for the thermodynamic
variables.

Theorem 3. Suppose G > 0 and Γ 6 γ are satisfied everywhere. Consider a sequence
of two entropy-increasing shocks from state 0 to state 1 and from state 1 to state 2, and
a third shock from state 0 to state 2′ with P2′ = P2. Then

(u2 − u1)
2 + (u1 − u0)

2 < (u2′ − u0)
2. (2.26)

Proof. Combining equations (2.2) and (2.4) a point on the Hugoniot locus based
on state 0 satisfies

e− e0 = 1
2
(u− u0)

2 + P0(V0 − V ).

For the three shock 0-1, 1-2 and 0-2′ we have

e1 − e0 = 1
2
(u1 − u0)

2 + P0(V0 − V1),

e2 − e1 = 1
2
(u2 − u1)

2 + P1(V1 − V2),

e2′ − e0 = 1
2
(u2′ − u0)

2 + P0(V0 − V2′).
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Subtracting the third equation from the sum of the first two equations yields

1
2

[
(u2′ − u0)

2 − (u2 − u1)
2 − (u1 − u0)

2
]

= (P1 − P0)(V1 − V2) + (e2′ − e2) + P0(V2′ − V2).

(2.27)

On the right-hand side, the first term is positive since entropy-increasing shocks are
pressure increasing (P1 > P0 for shock 0-1) and compressive (V2 < V1 for shock 1-2).
Since P2 = P2′ , using (2.24) and (2.25) the next two terms can be expressed as

(e2′ − e2) + P0(V2′ − V2) =

∫ S2′

S2

(
1− Γ

γ

P2 − P0

P2

)
T dS

∣∣∣∣
P2

. (2.28)

The integrand is positive since Γ/γ 6 1 and 0 < (P2 − P0)/P2 < 1. By the triple-
shock entropy theorem, S2 < S2′ . Hence, the right-hand side of (2.27) is positive and
inequality (2.26) holds.

We now have bounds on all the hydrodynamic variables for the state behind a
sequence of shocks in terms of the corresponding variables behind a single shock
to the same final pressure. These bounds have important consequences for shock
interactions.

3. Shock interactions
In a shock interaction two incoming waves give rise to several outgoing waves,

one for each wave family. The possible outcomes are determined by applying the
conservation laws in the local neighbourhood of the singular point at which the
shock waves intersect. The question of non-uniqueness is addressed in the next section.
For the fluid equations, in one-dimension there are three wave families and hence
three outgoing waves. The fluid equations for steady supersonic two-dimensional flow
are also hyperbolic. Oblique shocks in two dimensions satisfy the one-dimensional
Hugoniot equations in the direction normal to the shock front. Even though there is
one additional equation in two dimensions, the system of equations has only three
wave families since the characteristic associated with the particle trajectory has a
multiplicity of two, corresponding to advection of both entropy and vorticity. A
shock interaction is characterized in one dimension by a wave diagram in the (x, t)-
plane and in two dimensions by a steady wave pattern in the (x, y)-plane. When the
stream direction is viewed as the time like direction, two-dimensional wave patterns
are quite similar to one-dimensional wave diagrams. In both cases, two incoming
waves give rise to three outgoing waves.

One wave family is linearly degenerate and corresponds to contacts. The other two
families are non-degenerate and are associated with acoustic waves. The interaction
of two shock waves determines a Riemann problem. Because one wave family is
linearly degenerate the fluid equations are similar to a 2× 2 system, and as described
below the outgoing waves in the solution can be determined with a graphical analysis
utilizing the concept of a wave curve. A wave curve is the locus of states behind
a scale-invariant wave with a fixed initial state and of a given wave family. For
a convex equation of state, the wave curve for each acoustic mode corresponds to
pressure-increasing shock waves and pressure-decreasing rarefaction waves. Here we
focus on the portion of the wave curve determined by the Hugoniot locus.

The acoustic wave families in one dimension are associated with the characteristic
velocities u − c and u + c, and the corresponding shock waves are refered to as left
and right facing. The moment of impact between two incoming shock waves defines
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Figure 3. The collision of two shocks of the opposite family. (a) The projection of the Hugoniot loci
in the (u, P )-plane. The dashed lines are Hugoniot loci for the incoming shocks. The solid lines are
the Hugoniot loci for the outgoing shocks. The outgoing waves of the shock interaction correspond
to the intersection point of the two solid curves. (b) Wave diagram in the (x, t)-plane. The initial
state is labelled 0. The incoming shocks are labelled 1 and the outgoing shocks are labelled 2. The
subscripts L and R denote the left and right states in the (x, t)-plane. The label 2′ denotes a single
shock from the initial state with the same final pressure as the outgoing waves.

the initial conditions of a Riemann problem. Across a contact the particle velocity
and pressure are continuous. Consequently, the outgoing waves of a shock interaction
are determined in the (u, P )-plane by the intersection of the right facing wave curve
based on the right state and the left facing wave curve based on the left state. For
example, in the collision of two shocks of the opposite wave family, the right state is
the state behind the left incoming wave and the left state is the state behind the right
incoming wave.

The non-degenerate wave families in two dimensions correspond to waves which
rotate the flow direction either clockwise or counter-clockwise. For a stationary oblique
shock the rotation of the streamline is refered to as the turning angle or deflection
angle and is denoted by θ. Across a contact the pressure and normal velocity are
continuous. In the distinguished frame in which the node (the intersection point of the
shocks) is at rest, the normal velocity of the contact vanishes and the flow direction
is continuous across the contact. Consequently, the outgoing waves are determined
by the intersection of wave curves in the (θ, P )-plane. The shock portion of the wave
curve in the (θ, P )-plane is refered to as the shock polar.

3.1. Interactions in one dimension

Next we discuss the consequences of the velocity bound, Theorem 3, for one-
dimensional shock interactions. First we consider the collision of two shocks of
the opposite wave family and show that the two outgoing waves must be shocks. The
wave curves in the (u, P )-plane and the corresponding wave diagram in the (x, t)-plane
are sketched in figure 3. Before the collision there is an incoming left facing shock
0-1L and an incoming right facing shock 0-1R . In order to prove that the outgoing
waves are always shocks, we must show that the wave curve for an outgoing shock
does not cross the wave curve for an incoming shock as shown in figure 4.

From figure 3, for right facing waves the condition that the wave curves do not
cross is u2R < u2′ . This can be expressed in terms of the change in velocity across the
three shocks, 0-1R , 1R-2R and 0-2′, as

|u2 − u1| − |u1 − u0| < |u2′ − u0| , (3.1)
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Figure 4. Excluded case in which the collision of two shocks of the opposite family would result
in a reflected rarefaction.

where to simplify the notation we have denoted states 1R by 1 and 2R by 2. Since
|u2 − u1| − |u1 − u0| < |u2 − u1| and inequality (2.26) implies that |u2 − u1| < |u2′ − u0|,
condition (3.1) is satisfied. Hence the wave curves do not cross and the outgoing
waves are always shocks.

Next we consider the collision of two shocks of the same wave family. The wave
curves corresponding to the incoming shocks can cross in the (u, P )-plane as illustrated
in figure 5. In particular, there may be a region on the second wave curve for which

|u2 − u1|+ |u1 − u0| > |u2′ − u0| ,
even though by Theorem 3

(u2 − u1)
2 + (u1 − u0)

2 < (u2′ − u0)
2 .

As a consequence, there are two possible outcomes when one shock overtakes another.
There is always a stronger transmitted shock of the same wave family, but either a
reflected rarefaction or a reflected shock of the opposite wave family. These two cases
have been previously noted by von Neumann (1945) and Fritz (1996). Typically, the
reflected wave is a rarefaction. In the case with two shocks, Theorem 3 implies that
the reflected shock is very weak compared to the transmitted shock.

When the outgoing waves are both shocks, there are two categories of particle
paths, see figure 5(c). Paths in one set cross the two incoming shocks and the
reflected outgoing shock (opposite wave family to the incoming shocks), while paths
in the other set cross only the transmitted shock (same wave family as the incoming
shocks). The boundary between these two sets of paths corresponds to a contact since
Corollary 3 with N = 3 implies that the entropy behind the transmitted shock is
higher than the entropy behind the reflected shock.

3.2. Interactions in two dimensions

In two dimensions, sequences of oblique shocks commonly occur in wave patterns
resulting from shock interactions. The simplest examples for which the triple-shock
entropy theorem apply are illustrated in figure 6. The shock waves in these patterns
can be classified as incoming or outgoing (Landau & Lifshitz 1959, chap. X, § 102).
The classification is according to the direction in which information flows. A wave is
incoming if the component of the velocity in the direction of the front points towards
the node, otherwise the wave is outgoing. Typically, two incoming shocks interact
giving rise to two outgoing waves (shock or rarefaction) separated by a contact, see
e.g. Glimm et al. (1985). Degenerate cases, in which one of the outgoing waves has
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Figure 5. The interaction (overtake) of two shocks of the same wave family. (a) Hugoniot loci in
the (u, P )-plane. (b) (x, t)-wave diagram when outgoing waves consist of reflected rarefaction and
transmitted shock. (c) (x, t)-wave diagram when outgoing waves are both shocks. Thin lines with
arrows represent particle paths.

zero strength and disappears, are important when the flow across a wave pattern
is transonic. In the figure, an arrow on a shock front pointing towards the node
indicates an incoming wave while an arrow pointing away from the node indicates an
outgoing wave. The same convention is used in figures 3 and 4 to indicate incoming
and outgoing waves in one dimension.

An exceptional case is the Mach reflection (MR) shown in figure 6(a). It consists of
one incoming wave splitting into two outgoing waves and a contact. As discussed in
a later subsection, this wave splitting does not cause a shock wave to be unstable. A
consequence of the two-dimensional stability is that a Mach reflection with a reflected
centred rarefaction does not occur.

A degenerate cross-node (DCN) is illustrated in figure 6(b). Superficially, this system
looks like a Mach reflection and is sometimes refered to as an inverted Mach reflection
(Courant & Friedrichs, 1948; Hornung 1986); but there are significant differences.
First, it has two incoming shocks while the MR has only one. The extra incoming
shock belongs to the opposite wave family than the Mach stem in a MR. Secondly, this
reflection requires an extra boundary condition to generate the second incoming shock,
e.g. a downstream blunt body as sketched or a downstream sonic choke. Thirdly, the
contact is directed away from the wall while in MR it impacts on the wall. A cross-
node usually has two outgoing waves. In the degenerate case, one outgoing wave has
zero strength. Despite the degeneracy, this wave pattern can generically occur because
the flow behind the second incoming wave is subsonic. Consequently, the shock front
can curve in response to downstream boundary conditions and compensate for the
lower-dimensionality of the degenerate wave pattern.

An overtake node also has two incoming shocks, but now they belong to the
same wave family rather than the opposite family as in the cross-node. A degenerate
overtake node (DON) is illustrated in figure 6(c). The outgoing waves consist of a
transmitted shock and a contact. This only occurs when the flow downstream of
the second incoming shock is subsonic. In the general case, the downstream flow
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Figure 6. Examples of two-dimensional wave patterns: (a) Mach reflection, (b) degenerate
cross-node, (c) degenerate overtake node, (d) overtake node with two outgoing shocks.

is supersonic and the overtake node gives rise to two outgoing waves separated by
a contact; the extra wave may be either a shock, as shown in figure 6(d), or an
expansion (not illustrated). The overtake node with two outgoing shocks is analogous
to the one-dimensional shock interaction shown in figure 5(c).

We consider in detail a Mach configuration. As shown in figure 7, streamlines either
go through the incident and reflected shocks, or through the Mach stem. Downstream
of the node (triple point), pressure is continuous. The triple-shock entropy theorem
implies that the entropy behind the Mach stem is higher than the entropy behind the
reflected shock. Therefore, the intersection of three shocks must generate a contact.
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Figure 7. Streamlines for a Mach configuration in the rest frame of the node.

Weak reflections sometimes have the appearance, due to limited resolution, of three
shocks intersecting without a contact. These patterns actually correspond to a von
Neumann reflection (Colella & Henderson 1990) in which the node is smeared out
and is not a singular point.

For a stationary wave pattern, the total enthalpy 1
2
|u|2+H is constant. By Corollary 4

the enthalpy is higher behind the Mach stem. Therefore, in the rest frame of the node,
the velocity is lower behind the Mach stem than behind the reflected wave. Thus,
at the contact in a Mach configuration there must be both an entropy jump and
a velocity jump. Since the velocity jump occurs in the tangential component of the
velocity, the contact is a velocity shear layer and a Mach configuration generates
vorticity. The same considerations apply to the other examples shown in figure 6.

4. Non-uniqueness and hysteresis
When an equation of state is convex and satisfies the modified medium condition,

along the Hugoniot locus both P and u are monotonic and extend to infinity.
Moreover, the wave curves used in the analysis of the solution to a one-dimensional
Riemann problem have a unique intersection, see e.g. Menikoff & Plohr (1989).
Consequently, the outgoing waves that arise from a shock interaction in one dimension
are unique.

In contrast to one-dimensional wave curves, shock polars are bounded and not
monotonic. Consequently, in the graphical analysis of two-dimensional shock inter-
actions the wave curves may have no intersection or more than one intersection. The
case with multiple intersections is similar to what occurs in one dimension when the
EOS is non-convex. Analogies with the non-convex one-dimensional case are noted
later. When there is no intersection, the problem of non-existence is resolved with
more complex wave patterns, either with transonic curved shocks or with composite
wave patterns. Examples of the first type are von Neumann reflection (Colella &
Henderson 1990), and anomalous reflection (Grove & Menikoff 1990). These wave
patterns are not steady but may be pseudo-steady. Thus, resolution of non-existence
may require time-dependent solutions. Composite wave patterns consist of multiple
simple nodes separated by smoothly varying flow. The multiple nodes are a result
of internal shocks generated by the incoming waves. Since the nodes have different
velocities, the analysis of each simple node requires a different set of incoming and
outgoing shock polars. Examples of composite wave patterns include complex Mach
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reflection, double Mach reflection and the precursor wave pattern studied by Hen-
derson, Colella & Puckett (1991). An analogous situation occurs in one dimension
for a non-convex EOS. A rarefaction curve ends when G = 0, and in order for
all Riemann problems, i.e. shock interactions, to have a solution it is necessary to
continue the rarefaction curve with a composite consisting of a rarefaction followed
by an anomalous (entropy-increasing expansive) shock and then a second rarefaction,
see Zel’dovich & Raizer (1967, chap. XI, § 20). In this section, we only consider the
problem of multiple intersections of the shock polars and the question it raises for
non-uniqueness of shock interactions.

Let us consider a time-dependent problem in which the incoming wave types are
assumed to be known at the initial time. When the solution changes slowly in time
the wave pattern is determined by continuity of the polar solution. Some solutions
have wave patterns in which the flow behind an outgoing wave is subsonic. In these
cases, downstream boundary conditions are needed to determine the rest frame of
the node. Time-dependent boundary conditions can cause a wave pattern to bifurcate
or change form. Bifurcations can be triggered by acoustic waves impacting a node
(the limiting case in which a weak node collides and scatters off another node) or
forced by a sudden change in geometry, e.g. a shock impacting a wedge. Both shock
tube experiments and numerical simulations have shown that when a shock impacts
a wedge leading to a Mach reflection, the path of the triple point can be greatly
affected by a boundary layer due to either viscosity or heat conduction (Henderson,
Crutchfield & Virgona 1997). Thus, dissipative mechanisms at small scales can lead
to local downstream boundary conditions which affects the bifurcation process. A
bifurcation can only result in a wave pattern allowed by the shock polar analysis.
Consequently, a wave pattern can bifurcate only when there is another local wave
pattern compatible with shock polar analysis.

Additional complications arise when determining the wave patterns that occur in
steady-state flows. In steady state, the wave pattern must be compatible with the global
flow. Moreover, the identification of incoming and outgoing waves may depend on
the downstream flow; e.g. figure 6(b) indicates how a downstream obstacle can lead to
a degenerate cross-node in place of a more common regular reflection. Furthermore,
the number of boundary conditions for the spatial region of interest depends on
the nature of the flow, in particular, the number of families of characteristics that
are directed into the region. Frequently, the downstream boundary conditions are
not completely known ahead of time. For example, a vacuum pump may determine
only the pressure or average flow rate in the downstream portion of a wind tunnel.
As a local condition, this may not be sufficient to determine whether the outflow
is supersonic or subsonic. Hence the number of incoming characteristics and the
corresponding value of the Riemann invariants must be determined as part of the
global solution. Consequently, the wave patterns are not always known a priori.

Hysteresis observed in experiments leading to steady-state flow shows that more
than one global solution is compatible with the applied boundary conditions. In
principle, the transients at the start of an experiment and the small-scale dissipative
mechanisms (such as viscosity or heat conduction which can lead to boundary layers)
determine the asymptotic steady-state flow. Without knowing the time history or the
details of the dissipative mechanisms, the local stability of possible wave patterns
is an important means for selecting which steady wave pattern is most likely to
occur.

Next we analyse the stability of a planar shock wave in multi-dimensions. Similar
considerations can be applied to resolve the non-uniqueness of shock polar solutions
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Figure 8. Two-dimensional shock splitting. (a) Pressure threshold when two-dimensional stability
condition holds. (b) Shock polars when the stability condition is not satisfied. (c) Shock front with
a pair of Mach nodes that spontaneously form when the two-dimensional stability condition is
violated. Dotted lines with arrows indicate the direction of propagation of the shock fronts and of
each node.

that arise in many applications. This also leads to the idea of a stability threshold
which provides an explanation of when and why hysteresis can occur.

4.1. Stability

One example of non-uniqueness is the possibility of shock splitting, i.e. a Mach
configuration represents an incoming shock splitting into two outgoing shocks, see
figure 6(a). If this splitting were to occur spontaneously then a shock wave would be
unstable. The linear stability analysis by Kontorovich (1959) can be used to determine
the conditions for which a planar shock wave is stable to two-dimensional pertur-
bations. Fowles (1981) showed that the shock stability condition can be expressed
simply as an algebraic condition involving the equation of state and the pressure
ahead of and behind the shock

(Γ + 1)
∆P

P
< γ. (4.1)

When the equation of state satisfies the two-dimensional stability condition, Γ+1 6 γ,
all pressure increasing shocks are two-dimensionally stable. Moreover, as derived in
Appendix B, Fowles showed that the stability inequality is equivalent to a geometric
condition on a shock polar, namely the sonic point occurs at a lower pressure than
the maximum turning angle. As a consequence there is a minimum strength for the
reflected wave in a Mach configuration since on the shock polar, see figure 8(a), the
ahead state lies below the sonic point and the behind state lies above the maximum
turning angle. We next show that the minimum reflected wave strength can be
interpreted as giving rise to a non-zero threshold for a perturbation to cause a shock
to split.

Let us consider a shock wave for which the stability condition is violated. A
continuous path can be constructed by which a shock can split into two shocks
with a higher entropy as follows. We choose the reference frame in which the shock
front is stationary and the incoming velocity is given by (B 2). In this frame the
shock corresponds to the detachment point on the shock polar. By Theorem 6 (in
Appendix B) the detachment point is supersonic. If the tangential component of
the incoming velocity is increased slightly then the shock state remains supersonic
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but lies slightly below the detachment point on the new shock polar as shown in
figure 8(b). Consequently, the shock can split into a pair of Mach configurations, see
figure 8(c), in which the Mach stem has only a slightly greater shock pressure and
the reflected wave is arbitrarily weak. By slowly increasing the tangential component
of the incoming velocity (in effect, this varies the node velocity), there is a continuous
path in which the reflected shock increases in strength. It follows from the triple-shock
theorem that the shock splitting raises the entropy of the flow. This simple picture
underlies the weakly nonlinear analysis of Majda & Rosales (1983).†

Both Kontorovich (1959) and Fowles (1981) presented an alternative way of viewing
the instability. Consider a shock interaction in which one of the incoming waves is
weak, i.e. an acoustic wave. An important parameter characterizing the interaction
is the reflection coefficient; the ratio of the pressure jump across the reflected wave
to the pressure jump across the weak incoming wave. If the stability condition is
violated, then there is an angle of incidence between the shock and the weak wave
such that the reflection coefficient is infinite. This angle of incidence corresponds to
the reference frame in which the shock state coincides with the detachment point
on the shock polar. The infinite reflection coefficient implies that an arbitrarily weak
perturbation leads to a finite outgoing wave. Consequently, the outgoing waves are
spontaneously formed and the shock front is unstable leading to transverse waves
propagating along the shock front. A similar transverse instability has been observed
experimentally and numerically for detonation waves; see e.g. Fickett & Davis (1979)
and references therein and Bourlioux & Majda (1992). However, the instability of the
detonation wave depends on the reaction zone dynamics and is not merely the result
of violating the stability condition for the equation of state of the reaction products;
see also Mond & Rutkevich (1994) for the derivation of a modified stability condition
applicable to a partly dispersed shock in which the relaxation is due to ionization.

Conversely, when the stability condition holds there is no continuous path along
which a shock wave can split into a higher entropy state. The stability condition
can be interpreted as giving rise to a threshold. Waves with an amplitude below the
threshold are scattered from a shock front (the analogue of elastic scattering) while
waves above the threshold cause a bifurcation of the shock front in which a pair of
Mach nodes are formed (the analogue of inelastic scattering).

Next we discuss the transition between regular and Mach reflection. There is a
range in parameter space (shock strength and incident shock angle) for which a
symmetric pair of incoming shocks can give rise, based on shock polar analysis,
to either regular reflection (cross-node) or Mach reflection (pair of Mach nodes).
A transition criterion is frequently used to resolve the non-uniqueness in the wave
pattern. Many steady-state wind tunnel and shock tube experiments have shown that
if the flow is two-dimensional then the transition criterion for strong incident waves
corresponds to the von Neumann or mechanical equilibrium point on the shock polar
(Molder 1971; Pantazapol Bellet & Soustre 1972; Henderson & Lozzi 1975; Hornung
et al. 1979; Hornung & Robinson 1982).

In the wind tunnel experiments, see figure 9, the incoming flow velocity is fixed and
the shock waves are generated by wedges placed in the flow stream. As the wedge
angle is varied the state behind the lead (upstream) shock moves along a fixed shock

† Majda & Rosales (1983) attempted to explain the transverse instability observed experimentally
in propagating detonation waves. Their analysis neglected the dynamics of the reaction zone by
treating the detonation wave as a discontinuity. Consequently, their analysis really applies to shock
waves rather than detonation waves.
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wave as a dotted or dashed line. The symbols denote the following wave states: ◦ an incoming
shock state; 4 a supersonic regular reflection (RR) state; O a subsonic RR state; �, a Mach
reflection (MR) state; �, a degenerate cross-node (DCN) state; •, is the von Neumann (mechanical
equilibrium) transition point; �, either the detachment transition point or the point at which the
reflected wave in Mach configuration becomes subsonic. Horizontal dashed lines bound the small
region for degenerate overtake node (DON) states. The reflected polars with both RR and MR
comprise the shaded region.

polar. At some angle the reflected shock polar intersects the incident shock polar
at its maximum pressure. This intersection point is known as the von Neumann or
mechanical equilibrium point. For smaller wedge angles the incoming shock pressure
is lower and only regular reflection is possible, while at larger angles both regular and
Mach reflection are possible. At the von Neumann point, the pressure immediately
downstream of the shock intersection point is the same for both regular and Mach
reflection. The triple-shock theorem implies that the Mach configuration has a higher
entropy than that of the regular reflection. By continuity, in the neighbourhood of
the mechanical equilibrium point, the Mach configuration still has the higher entropy.
For a continuous transition one expects the higher entropy configuration would be
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favoured based on thermodynamic stability. This provides a heuristic motivation for
the von Neumann point as the transition criterion.

A similar non-uniqueness occurs in one dimension when the equation of state
is non-convex. In some limited regimes in phase space, both a single shock wave
and a composite wave, consisting of a sonic shock followed by a compressive wave,
can have the same final pressure. We note that a compressive wave can spread out
rather than focusing into a shock in regions of phase space with G < 0. The non-
uniqueness is resolved with the Oleı̆nik-Liu extended entropy condition Liu (1976a);
accordingly shock waves on the Hugoniot locus for which there exists a shock with
a lower pressure and a larger shock speed are excluded and replaced by composite
waves. Liu (1976b) showed that the extended entropy condition selects those shocks
corresponding to the solution of the fluid equations with vanishing viscosity. The
admissible waves can also be justified with a stability argument; namely, perturb
the shock by smearing it into a smooth profile and then analyse the evolution of
the profile by examining how the characteristics focus to regenerate the shock wave.
The extended entropy condition is equivalent to selecting the wave, single shock or
composite, which for a given pressure has the higher entropy.

4.2. Hysteresis

In the region in which the solution to the shock polars is not unique, hysteresis
has been observed both experimentally and numerically for the regular to Mach
transition: see Chpoun et al. (1995), Vuillon, Zeitoun & Ben-Dor (1995), Ivanov et al.
(1995a, b), Henderson et al. (1997). To set the stage for our discussion of the transition
we first describe the possible wave patterns derived from shock polar analysis. The
shock polar diagram corresponding to the quasi-steady wind tunnel experiments is
shown in figure 9. This particular diagram is for an ideal gas EOS with γ = 1.4 and
an incident flow Mach number of 3.5. (The structure would be qualitatively different
only for a low incident Mach number.) There are several distinct regimes:

(1) Regular reflection only (state 1). At small wedge angles the incident shock
has low pressure and there are three possible wave patterns: (i) supersonic regular
reflection, (ii) degenerate cross-node, (iii) subsonic regular reflection. The degenerate
cross-node is not admissible since it has two incoming waves and the flow can only
support one. This is because the contacts behind the DCN would form a diverging
nozzle. Since the flow is subsonic the pressure would have to increase. But the
downstream boundary condition does not support the pressure increase. Hence the
degenerate cross-node cannot occur in the steady flow. The subsonic regular reflection
is unstable to small perturbations (Teshukov 1989). Therefore, it cannot occur in the
asymptotic steady state flow. Consequently, in this regime only the supersonic regular
reflection occurs.

(2) Von Neumann (mechanical equilibrium) point (state 2). For a particular incoming
shock strength, the supersonic RR coincides with the maximum pressure on the
incident shock polar. This is the transition between the DCN in the previous case
and the MR in the next case.

(3) Regular reflection and Mach reflection (state 3). Immediately above the von Neu-
mann point (slightly stronger incident shock wave) both supersonic regular reflection
and Mach reflection are possible. The reflected wave in the Mach configuration is
supersonic. Again the subsonic regular reflection is inadmissible based on stability.

(4) Sonic regular reflection. As the incident shock strength increases a point is
reached at which the regular reflection becomes sonic. For stronger incident shocks
both regular reflection solutions are subsonic.
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(5) Detachment point (state 4). There is a distinguished incident shock strength at
which the two possible regular reflections coalesce. The regular reflection is subsonic.
For stronger incident shocks there are no regular reflection shock polar solutions.

(6) Mach reflection only (state 5). The shock polar diagram has a unique solution
corresponding to Mach reflection. The reflected wave in the Mach configuration is
supersonic.

(7) Mach reflection with sonic reflected wave (state 6). As the incident shock strength
increases a point is reached at which the reflected wave in the Mach configuration
becomes sonic. For stronger incident shocks the reflected wave is subsonic.

(8) Termination point for Mach reflection (state 7). As the incident shock strength
is further increased a point is reached at which the deflection angle vanishes for the
reflected wave in the Mach configuration. This is the termination point of the Mach
wave patterns.

(9) Degenerate overtake node. For still larger incident shock strength, the shock
polar diagram has a unique solution corresponding to a degenerate overtake node.
This wave pattern is not admissible since it has two incoming waves and the flow
can support only one incoming wave. Most likely, the flow pattern will have a single
curved shock wave which begins at the tip of one wedge and ends at the tip of the
other wedge. A similar curved shock occurs in the pseudo-steady case; (Hornung
1986, figure 13). For weak incident shocks this becomes the von Neumann reflection
(Colella & Henderson 1990).

(10) Beyond maximum turning angle. When the wedge angle is greater than the
maximum turning angle on the incident shock polar, no shocks in the channel
between the wedges are possible. A bow wave will develop in front of the wedges
leading to subsonic flow in the channel.

Downstream boundary conditions and stability are determining factors in selecting
admissible steady-state wave patterns. However, in regime (3) there still remains two
possibilities: either regular reflection or Mach reflection. We note that Hornung (1986)
presented a similar catalogue of wave patterns for the pseudo-steady flow that occurs
in shock tube experiments studying the impact of a shock on a wedge. In the shock
tube experiments, the shock strength is fixed and the wedge angle is varied. In this
case the incident wave speed in the frame of the node is not fixed. Consequently, the
different regimes cannot be pictured on a single-shock polar diagram.

For the wind tunnel experiments the incoming flow velocity is fixed and the wedge
angle is slowly varied. The wave pattern is quasi-steady but changes with the wedge
angle. Some of the experiments show the following hysteresis effect. At small
wedge angles there is only one allowed wave pattern and regular reflection is ob-
served. As the wedge angle is increased and the incident pressure rises above the von
Neumann point, the regular reflection is maintained. Beyond the detachment point
regular reflection is not possible and the pattern abruptly changes to Mach reflection.
Then as the wedge angle decreases the Mach reflection continues to occur until the
von Neumann point. Thus, with increasing wedge angle the transition from regular to
Mach reflection occurs near the detachment point while with decreasing wedge angle
the transition from Mach to regular reflection occurs at the von Neumann point.
Other experiments do not show a hysteresis effect and both transitions occur at the
von Neumann point.

The hysteresis effect implies that both configurations are locally stable. Several
experiments suggest that the transition is affected by the flow behind the node as
follows.

(i) When a shock reflects from a curved wall, the transition angle varies with the
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shape of the wall (Henderson & Lozzi 1979; Ben-Dor, Takayama & Kawauchi 1980;
Takayama & Sasaki 1983).

(ii) Both regular and Mach reflection occur simultaneously when a planar shock
impacts a cylindrical cone whose axis is not aligned with the shock normal. The
angle between the shock and the cone wall varies with the azimuthal angle of the
cone, and at some angle the wave pattern changes from regular to Mach reflection.
The transition angle along the cone is not the same as for a planar wedge (Suzuki,
Sakamura & Yin 1995; Yang, Sasoh & Takayama 1996).

(iii) Cylindrically or spherically converging shocks appear to become unstable to
transverse waves (i.e. Mach configurations spontaneously form) at large convergence
ratios when the flow gradients behind the shock front becomes large (Wallus &
Demmig, 1995).

To understand this phenomenon, we suggest an analogy with a gas/liquid phase
transitions. The following are the relevant aspects of a phase transition. The con-
straints of the system require that in equilibrium the two phases have the same pressure
and temperature. Long-lived meta-stable states can exist, such as a super-cooled gas.
The lifetime of the meta-stable state can be greatly diminished by impurities such as
nucleation centers. This is because there is a potential barrier between a super-cooled
gas and a liquid. Surface energy at a gas/liquid interface causes small drops formed by
thermodynamic fluctuations to be thermodynamically unfavourable and to evaporate
before they can grow into the stable equilibrium state. A nucleation site decreases the
potential barrier and increases the rate at which large drops form.

For the analogy we have in mind the two wave patterns, Mach reflection and
regular reflection, play the role of the two phases. In steady-state flow, the total
enthalpy is a constant. The equilibrium configuration is determined by maximizing
the entropy subject to the constraint that both the pressure and the total enthalpy are
fixed. By the triple-shock theorem, the Mach reflection corresponds to the equilibrium
state and the regular reflection to a meta-stable state.

The hysteresis effect for the regular to Mach transition may be explained by the
hypothesis that there is a transition threshold. Acoustic noise sets the background
perturbation amplitude and is the analogue of thermodynamic fluctuations. A flow
gradient or a boundary layer (Henderson et al. 1997) along the wedge wall affects
the transition threshold and plays a role similar to that of a nucleation centre on
the potential barrier. The lifetime of the meta-stable regular reflection configuration
can be decreased causing a transition to the maximum entropy Mach reflection
either by lowering the threshold or by raising the background noise. Conversely,
the transition can be delayed by either raising the threshold or by lowering the
background noise. Only when perturbations are below the threshold would hysteresis
be observed (Ivanov et al. 1995b). Without flow gradients to raise the threshold, there
is usually sufficient noise in a wind tunnel for the most stable local configuration
to occur. This is compatible with the many experiments that measure the transition
between regular and Mach reflection to occur at the von Neumann point.

An important source of flow gradients are from three-dimensional effects; for
example, when a shock impacts a cone at an angle of attack, the transverse gradient
is from the asymmetry of the conical flow and as noted previously this affects the
transition. In recent experiments with open sided models (Chpoun et al. 1995; Fomin
et al. 1996; Skews, 1996) there are transverse gradients that have a decisive influence
on the hysteresis effect. In particular, if the aspect ratio, height to width of the model
inlet, is greater than 2.5 then transition occurs at the von Neumann point. In this
case the transverse gradients are small and have no effect on transition and there
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is no hysteresis. However, if the aspect ratio is reduced to 1 or less then there is a
significant hysteresis effect.

In summary, when the local analysis of a shock interaction has more than one
solution, the non-uniqueness is resolved by considering the stability of the solution.
Local stability suffices to determine uniquely the wave structure in many cases. Com-
mon examples in two dimensions include the cases when the possible outcomes are (i)
supersonic versus subsonic regular reflection, and (ii) regular reflection versus inverted
Mach reflection. When more than one solution is locally stable, other considerations
such as global boundary conditions are needed. In some cases, the boundary condi-
tions are such that hysteresis can occur. Regular versus Mach reflection is an example
of this case. Transition criteria are then inadequate and the concept of a transition
threshold becomes important. When there is sufficient noise in the system, the high-
est entropy solution appears to be most stable and would occur. For the transition
between regular and Mach reflection, the triple-shock entropy theorem then leads to
the mechanical equilibrium transition criterion for the most favoured wave pattern.
Analogies with meta-stable thermodynamic states and phase transitions are helpful
in understanding the possible transitions when the outcome of a shock interaction is
non-unique.

This research is supported by the US Department of Energy, Los Alamos National
Laboratory.

Appendix A. Implicit value theorem

Our proof that the Hugoniot locus for a convex equation of state can be parame-
terized by the entropy, Corollary 1, depended critically on the implicit value theorem.
This theorem is a corollary of the inverse function theorem. Here we state a simple
version of the theorem sufficient for our needs.

Theorem 4 (Inverse function theorem). Suppose that the function f : Rn → Rn

is continuously differentiable. Let f ′(a) denote the derivative of f at a, i.e. the matrix
of partial derivatives. If det f ′(a) 6= 0 then there are open sets V and W such that
a ∈ V and the restriction f : V → W has a continuous inverse f −1: W → V that is
differentiable.

For an elementary proof, see for example, Spivak (1965, p. 35).

For our application to the Hugoniot locus we define the function from R2 → R2

by f (P , S) = (h̃(P , S), S). The derivative matrix is given by

f ′ =

(
∂P h̃ 0

∂S h̃ 1

)
.

It follows that det f ′ = ∂P h̃. Therefore, the inverse function theorem applies when
∂P h̃ 6= 0, and then locally P = P (h̃, S). Since the Hugoniot locus is defined by h̃ = 0,
there is then a neighbourhood of a point on the Hugoniot locus in which Ph = P (0, S).
Because P and S are sufficient to define the state behind the shock front, the Hugoniot
locus is locally parameterized by S about any point at which ∂P h̃ 6= 0. This is an
example of how the equation h̃(P , S) = 0 implicitly defines a function Ph(S) when one
of the partial derivatives (in this case ∂P h̃) is non-zero.



204 L. F. Henderson and R. Menikoff

(a) (b)
Propagating
shock
front

At
Rest

up

us

q0
q1

Stationary
shock
front

q||

q||
â0

â1
h

q
0  = u

s

Figure 10. Notation used to describe velocities across shock front. (a) one-dimensional (normal)
shock wave in the rest frame of the state ahead of the shock front. (b) Oblique two-dimensional
shock wave in the rest frame of the shock front.

Appendix B. Detachment and sonic points on a shock polar
A shock polar describes the properties of stationary oblique shocks used in the

analysis of two-dimensional wave patterns. For a given upstream state, the shock
polar relates the downstream pressure to the deflection angle of a streamline through
the shock front. It plays a similar role for determining the outcome of two-dimensional
shock interactions as the projection of the Hugoniot locus in the (u, P )-plane does
for the solution of a one-dimensional Riemann problem.

In this section, the properties of a shock polar are derived which we use in our
analysis of two-dimensional shock stability. First, we relate the shock polar to the
Hugoniot locus. It is convenient to choose a reference frame for one-dimensional
shock waves in which the flow ahead of the shock front is at rest, see figure 10(a).
We denote by us and up the velocity of the shock front and the particle velocity
behind the front, respectively. When G > 0 and Γ < γ, either us or up may be used
to parameterize the one-dimensional Hugoniot locus. Moreover, we consider only the
physical entropy-increasing shocks. These are compressive and pressure increasing.
For an oblique two-dimensional shock wave, we use the reference frame in which the
shock front is at rest, see figure 10(b). We denote by q0 the velocity ahead of the front,
and β0 and β1 the angles between the shock front and the streamline ahead of and
behind the front respectively. Since the flow ahead of the shock is supersonic, the shock
polar is only defined for q0 > c0 and the angle of the front is restricted to the range
sin−1(c0/q0) 6 β0 6

1
2
π. The component of the velocity parallel to the front is denoted

q‖. It is continuous across the front. Hence, q‖ = q0 cos(β0) = q1 cos(β1). The deflection
angle of the streamlines is given by θ = β0−β1. As in one dimension, there are two non-
degenerate wave families; oblique shocks with positive and negative deflection angle
(θ > 0 and θ < 0) are the analogue of the left and right facing one-dimensional waves.

From the geometry in figure 10, the angles of the streamlines for an oblique shock
are related to the one-dimensional shock velocities as follows:

tan β0 =
us

q‖
, tan β1 =

us − up
q‖

.

Using the trigonometric identity for the tangent of the difference of two angles, we
obtain

tan θ =
tan β0 − tan β1

1 + tan β0 tan β1

=
usup

q2
0 − usup

·
q‖

us
. (B 1)
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At the detachment point of a shock polar, the deflection angle is maximum. It is
determined by the condition

d

dup
log tan θ = 0.

Straightforward algebra reduces this condition to the equation

q2
0 = u2

s + (us − up)up
dus
dup

. (B 2)

From (B 2) we can deduce

Theorem 5. Suppose G > 0 and Γ 6 γ are satisfied everywhere. Consider the one-
parameter family of shock polars in which the upstream thermodynamic state (V0, S0) is
fixed and q0 is varied. Then the following conditions are equivalent:

(i) on the Hugoniot locus based on the state (V0, S0) the quantity u2
s +

(us − up)updus/dup is monotonically increasing with increasing shock strength;
(ii) every shock coincides with the detachment point on a shock polar for a unique

value of q0;
(iii) every shock polar has a unique local extremum in θ, and hence one and only

one detachment point.

Corollary 5. Suppose G > 0 and Γ 6 γ are satisfied everywhere. Consider the
Hugoniot locus based on the thermodynamic state (V0, S0). If on the Hugoniot locus

V0

d2P

du2
p

+
dus
dup

> 0 (B 3)

is satisfied, then every shock polar with the initial thermodynamic state (V0, S0) has a
unique detachment point.

Proof. By differentiation of (B 2), the monotonicity condition in Theorem 5 is
equivalent to

up

(
1 +

dus
dup

)
dus
dup

+ (us − up)
(
up

d2us

du2
p

+ 3
dus
dup

)
> 0. (B 4)

From the Hugoniot jump conditions

∆P = ρ0upus.

The second derivative of P is given by

V0

d2P

du2
p

= up
d2us

du2
p

+ 2
dus
dup

. (B 5)

Substituting (B 5) into (B 4) we obtain

(us − up)
(
V0

d2P

du2
p

+
dus
dup

)
+ up

(
1 +

dus
dup

)
dus
dup
> 0.

Since us > up and dus/dup > 0, (B 3) is a sufficient condition for (B 4).

When the EOS satisfies G > 0 and Γ 6 γ, the shock velocity is monotoni-
cally increasing, i.e. dus/dup > 0. Consequently, convexity of P (up) is a sufficient
condition for a unique detachment point. We note that convexity of wave curves, i.e.
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Figure 11. Sketch of functions used to show when a shock polar has a non-unique sonic point. The
Hugoniot locus is parameterized by us. The solid line is the function H + 1

2
c2 and the dashed line

is the function H0 + 1
2
u2
s . A value of q0 and the corresponding shocks for multiple sonic points are

indicated.

d2P/du2
p > 0, is also a sufficient condition to guarantee convergence when solving

one-dimensional Riemann problems with a second-order Newton iteration algorithm.

The stability of shock waves in multi-dimensions is determined by the position
on the shock polar of the sonic point relative to the detachment point. First, we
determine the sonic point. In the rest frame of the shock front, the total enthalpy is
a constant. Hence,

q2 − c2 = q2
0 + 2H0 − (2H + c2), (B 6)

where H = e+ PV is the specific enthalpy. From this we can deduce

Lemma 4 (Teshukov 1986). Suppose G > 0 is satisfied everywhere. Consider the one-
parameter family of shock polars in which the upstream thermodynamic state (V0, S0) is
fixed and q0 is varied. For all q0 > c0 the shock polars have a unique sonic point if
and only if along the Hugoniot locus based on the state (V0, S0) the quantity H + 1

2
c2 is

monotonically increasing with shock strength.

Proof. On the shock polar, the flow behind weak shocks, sin β0 & c0/q0, is
supersonic while the flow behind nearly normal shocks, sinβ0 . π/2, is subsonic.
By continuity there is at least one sonic point on every shock polar. If H + 1

2
c2 is

monotonic then by (B 6) q2 − c2 is monotonic and there is only one sonic point.

Since G > 0, the Hugoniot locus may be parameterized by us. Figure 11 illustrates
the case when H + 1

2
c2 is not monotonic. Suppose the constant function α(us) = α

intersects the curve H+ 1
2
c2 more than once. We can choose q0 such that α = H0 + 1

2
q2

0 .

Since the flow behind a normal shock (us = q0) is subsonic, the curve H0 + 1
2
u2
s lies

below and to the right of the curve H + 1
2
c2. Therefore, the values of (us)i at which

H + 1
2
c2 = α are all less than q0, and the shock polar for q0 has a sonic point at every

intersection of α with the curve H + 1
2
c2. Thus, if H + 1

2
c2 is not monotonic then there

is a q0 such that the shock polar has more than one sonic point.

For weak shocks it can be shown from a Taylor expansion of the Hugoniot jump
conditions that

c = c0 + (G0 − 1)up + O(u2
p), us = c0 + 1

2
G0up + O(u2

p).
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Hence,

u2
s + (us − up)up

dus
dup

= c2
0 + 3

2
G0c0up + O(u2

p),

H + 1
2
c2 = H0 + 1

2
c2

0 + G0up + O(u2
p).

Therefore, for convex equations of state when the Mach number ahead of the shock
is near 1, i.e. 0 < q0/c0 − 1� 1, shock polars have a unique detachment point and a
unique sonic point.

More generally, after some algebra, it can be shown that along the Hugoniot locus

1

T

d

dS

(
H + 1

2
c2
)
h

= 1 + Γ + γ

[
H+ G

(
−P
T

dV

dS

)
h

]
, (B 7)

where H is another dimensionless parameter describing the equation of state

H =
1

2γ

∂c2

∂e

∣∣∣∣
V

,

and (
P

T

dV

dS

)
h

=
2V

∆V

(
1 + 1

2
Γ∆V/V

γ + (V/P )(∆P/∆V )

)
measures the variation of V with entropy along the Hugoniot locus. (Teshukov 1986
obtained an alternative formulae but it is harder to interpret.) We note that H is
proportional to ∂c2/∂T |V and is typically positive. Moreover, V typically decreases
with shock strength, i.e. −dV/dS |h > 0, except when the Hugoniot locus goes through
regions of phase space in which dissociation or ionization are dominant effects.
Consequently, the right-hand side of (B 7) is typically positive and the Hugoniot
locus typically satisfies the condition required for a shock polar to have a unique
sonic point. Also, (B 4) is typically satisfied and shock polars typically have a unique
detachment point.

Next we determine the relative positions of the sonic and detachment points. First
we note that substituting the Hugoniot equation

2(H −H0) = (V + V0)∆P

into (B 6) we obtain for the sonic condition

q2 − c2 = q2
0 − [γPV + (V0 + V )∆P ]. (B 8)

In order to evaluate (B 2) for the detachment point we need an expression for dus/dup.
In their review article, Menikoff & Plohr (1989) have systematically determined the
differential of all quantities along the Hugoniot locus. From their equations (4.26)
and (4.27) we obtain

dus
dup

=

(
γ + (V/P )(∆P/∆V )

)
V0m

2/∆P

γ − Γ∆P/P − (V/P )(∆P/∆V )
, (B 9)

where m2 = −∆P/∆V = (ρ0us)
2 is the square of the mass flux through the shock

front. Substituting (B 9) along with the equations for the velocities

us = V0m, up = (V0 − V )m, us − up = Vm,

into (B 2) and subtracting γPV + (V0 + V )∆P from both sides of the equation we
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obtain

q2− c2 = V 2
0m

2− γPV + (V0 +V )∆P +
(V0 − V )Vm2

(
γ + (V/P )(∆P/∆V )

)
V0m

2/∆P

γ − Γ∆P/P − (V/P )(∆P/∆V )
.

Simple algebraic manipulations reduces the equation for the detachment point to

(q2 − c2)

(
γ − ∆P

P
Γ +

V

P
m2

)
= −PV

(
γ − V

P
m2

)[
γ − ∆P

P
(Γ + 1)

]
. (B 10)

We can now derive an important property of a shock polar.

Theorem 6 (Fowles 1981). Suppose G > 0 and Γ 6 γ are satisfied everywhere. On
a shock polar the detachment point is subsonic if and only if

∆P

P
(Γ + 1) < γ. (B 11)

Proof. We consider the sign of the factors on the left- and right-hand sides of
(B 10). Since the physical shocks are pressure increasing, 0 < ∆P/P < 1. From the
condition Γ 6 γ, it follows that γ − (∆P/P )Γ + (V/P )m2 > 0. Moreover, the state
behind a physical shock is subsonic. Hence, PV [γ − (V/P )m2] = c2 − (us − up)2 > 0.
Therefore, the sign of c2−q2 is the same as the sign of γ−(∆P/P )(Γ+1). Consequently,
the detachment point is subsonic, c > q, if and only if (B 11) is satisfied.

Corollary 6. Suppose G > 0 and Γ + 1 6 γ are satisfied everywhere. If a shock
polar has a unique sonic point and a unique detachment point then in the (θ, P )-plane
the detachment point lies above the sonic point, i.e. the detachment point has a higher
pressure than the sonic point.

Proof. Points on the shock polar corresponding to weak shocks (us & c0) are
supersonic while those corresponding to normal shocks (us . q0) are subsonic. Since
there is a unique sonic point on the shock polar, only those shocks with a pressure
above the pressure at the sonic point are subsonic. By the previous theorem, the
detachment point is subsonic. Therefore, it has a higher pressure than the sonic point.

As discussed in § 4.1, inequality (B 11) is necessary for multi-dimensional shock
stability. We note that since γ > 0, the inequality (B 11) is true for sufficiently weak
shocks. Hence, weak shocks are always stable. For every shock to satisfy the multi-
dimensional stability condition requires Γ + 1 6 γ. This is stronger than the medium
condition needed for uniqueness of all one-dimensional Riemann problems.
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